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(Caveat emptor: We are not a!liated directly with PyTorch. But we
find it really useful, and hope you will too.)
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An open source deep learning platform that provides a
seamless path from research prototyping to production
deployment.

https://pytorch.org/

https://pytorch.org/
https://pytorch.org/


Talk Outline
1. What is PyTorch? When, who and why.

2. Comparison with Tensorflow, Keras, and other deep learning frameworks.

3. Tensors and Data types

4. Similarities and Differences with NumPy

5. Understanding documentation & source code- GPU Computing in python with

PyTorch



What is PyTorch? When, who and why.
1. From the webpage:

2. PyTorch is a "second-generation" framework, an evolution of the original "Torch"
Library. Torch is written in C++, and the original interface was built for the LUA
programming language.

3. Much of Pytorch is still written in C++/Cuda:

An open source deep learning platform that provides a
seamless path from research prototyping to production
deployment.



Let's get started.



What is PyTorch? When, who and why.
4. Pytorch = "Numpy" + "GPU" + "Automatic Differentiation"

!"from the perspective scientific computing, pytorch has a lot of useful tools

for generic operations on multiple-dimensional arrays (a.k.a. Tensors) -- it's

not just for neural networks!

5. It is primarily developed by Facebook's artificial-intelligence research group along
with Universities & other Corporations. It is completely Open Source Software.

Let's get started.
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Let's get started.
import torch as th
print("Pytorch Version:",th.__version__)

Pytorch Version: 2.2.2



Let's get started.
import torch as th
print("Pytorch Version:",th.__version__)

Pytorch Version: 2.2.2

# Let's construct a 2-d array, or as Pytorch calls it, a Tensor:
x = th.Tensor([[1,2,3],[4,5,6]])
x

tensor([[1., 2., 3.],
        [4., 5., 6.]])



Let's get started.
import torch as th
print("Pytorch Version:",th.__version__)

Pytorch Version: 2.2.2

# Let's construct a 2-d array, or as Pytorch calls it, a Tensor:
x = th.Tensor([[1,2,3],[4,5,6]])
x

tensor([[1., 2., 3.],
        [4., 5., 6.]])

# You can readily convert it to a numpy array:
x_np = x.numpy()
x_np

array([[1., 2., 3.],
       [4., 5., 6.]], dtype=float32)



# The `shape` attribute gives the dimensions of a Tensor, very similar to numpy's .shape 
x.shape

torch.Size([2, 3])
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x.shape

torch.Size([2, 3])

x_np.shape

(2, 3)



# The `shape` attribute gives the dimensions of a Tensor, very similar to numpy's .shape 
x.shape

torch.Size([2, 3])

x_np.shape

(2, 3)

# The `dtype` attribute is helpful:
x.dtype

torch.float32



# We can convert using a `to` method:
# Dtypes:
# float16/32/64
# int/uint 8/16/32/64

xp = x.to(th.int64)
xp,xp.dtype

(tensor([[1, 2, 3],
         [4, 5, 6]]),
 torch.int64)



# We can convert using a `to` method:
# Dtypes:
# float16/32/64
# int/uint 8/16/32/64

xp = x.to(th.int64)
xp,xp.dtype

(tensor([[1, 2, 3],
         [4, 5, 6]]),
 torch.int64)

#There are many convenient mathematical operations,
#such as the transpose:
x.t()

tensor([[1., 4.],
        [2., 5.],
        [3., 6.]])



Numpy compatibility
There are several mathematical functions in pytorch which have their (usually similarly
named) equivalents in Pytorch.



Numpy compatibility
There are several mathematical functions in pytorch which have their (usually similarly
named) equivalents in Pytorch.

y = th.sin(x)
print('Pytorch sine function:\n', y)
x_np = x.numpy()

y_np = np.sin(x_np)
print('Numpy sine function:\n', y_np)

Pytorch sine function:
 tensor([[ 0.8415,  0.9093,  0.1411],
        [-0.7568, -0.9589, -0.2794]])
Numpy sine function:
 [[ 0.841471   0.9092974  0.14112  ]
 [-0.7568025 -0.9589243 -0.2794155]]



Numpy functions can even be applied to pytorch tensors (with important caveats -- more
on that later!)
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tensor([[ 0.8415,  0.9093,  0.1411],
        [-0.7568, -0.9589, -0.2794]])



Numpy functions can even be applied to pytorch tensors (with important caveats -- more
on that later!)

np.sin(x)

tensor([[ 0.8415,  0.9093,  0.1411],
        [-0.7568, -0.9589, -0.2794]])

# If you have a numpy tensor, use `th.as_tensor`
th.as_tensor(x_np)

tensor([[1., 2., 3.],
        [4., 5., 6.]])



Numpy functions can even be applied to pytorch tensors (with important caveats -- more
on that later!)

np.sin(x)

tensor([[ 0.8415,  0.9093,  0.1411],
        [-0.7568, -0.9589, -0.2794]])

# If you have a numpy tensor, use `th.as_tensor`
th.as_tensor(x_np)

tensor([[1., 2., 3.],
        [4., 5., 6.]])

# Or `th.from_numpy`:
th.from_numpy(x_np)

tensor([[1., 2., 3.],
        [4., 5., 6.]])



And of course, automatic di"erentiation



And of course, automatic di"erentiation
x = th.linspace(0,2*np.pi,100)
x.requires_grad_(True) # <- ??? We will explain this in the automatic differentition sect
y = th.sin(x)
from torch.autograd import grad 
y_prime = grad(y.sum(),x)[0] # Here's the magic function `grad`



fig,ax = plt.subplots(1,1,figsize=(4,2))
plt.plot(x.detach().numpy(),y.detach().numpy(),label="y=Sine") # Usually best to convert 
plt.xlabel("x")
plt.plot(x.detach().numpy(),y_prime.numpy(),label="Derivative of Sine")
plt.legend()
plt.show()



fig,ax = plt.subplots(1,1,figsize=(4,2))
plt.plot(x.detach().numpy(),y.detach().numpy(),label="y=Sine") # Usually best to convert 
plt.xlabel("x")
plt.plot(x.detach().numpy(),y_prime.numpy(),label="Derivative of Sine")
plt.legend()
plt.show()

Pytorch has automatically constructed the derivative.

These Automatic Differentiation features are key to training Neural Networks, but also very
useful for physical codes



GPU features
You can send a tensor to be stored on a GPU by using the Tensor.cuda  method:





GPU features
You can send a tensor to be stored on a GPU by using the Tensor.cuda  method:

x.cuda()    



----------------------------------------------------------------
-----------
AssertionError                            Traceback (most recent 
call last)
Cell In[17], line 1
----> 1 x.cuda()

File ~/opt/miniconda3/envs/torch_tutorial/lib/python3.12/site-pa
ckages/torch/cuda/__init__.py:293, in _lazy_init()
    288 raise RuntimeError(
    289 "Cannot re-initialize CUDA in forked subprocess. 
To use CUDA with "
    290 "multiprocessing, you must use the 'spawn' start 
method"
    291     )
    292 if not hasattr(torch._C, "_cuda_getDeviceCount"):
--> 293 raise AssertionError("Torch not compiled with CUDA e
nabled")
    294 if _cudart is None:
    295 raise AssertionError(
    296 "libcudart functions unavailable. It looks like 
you have a broken build?"
    297     )

AssertionError: Torch not compiled with CUDA enabled



... if you have a GPU on your machine!

GPU Support:

1. Nvidia/CUDA: Primary intended use of pytorch, very good support.

2. AMD/ROCm: According to forums, this is reasonably good now.

3. Apple Metal (mps): Reasonably good, but not all operations are available yet

As of 2024, in the end, you are very likely to run computationlly intensive code on linux with
an nvidia GPU. This is the ideal scenario for pytorch.



mps_tensor = th.ones(5,device='mps')
mps_tensor

/Users/nlubbers/opt/miniconda3/envs/torch_tutorial/lib/python3.1
2/site-packages/torch/_tensor_str.py:137: UserWarning: MPS: nonz
ero op is supported natively starting from macOS 13.0. Falling b
ack on CPU. This may have performance implications. (Triggered i
nternally at /Users/runner/work/_temp/anaconda/conda-bld/pytorch
_1711403226120/work/aten/src/ATen/native/mps/operations/Indexin
g.mm:283.)
  nonzero_finite_vals = torch.masked_select(

tensor([1., 1., 1., 1., 1.], device='mps:0')



mps_tensor = th.ones(5,device='mps')
mps_tensor

/Users/nlubbers/opt/miniconda3/envs/torch_tutorial/lib/python3.1
2/site-packages/torch/_tensor_str.py:137: UserWarning: MPS: nonz
ero op is supported natively starting from macOS 13.0. Falling b
ack on CPU. This may have performance implications. (Triggered i
nternally at /Users/runner/work/_temp/anaconda/conda-bld/pytorch
_1711403226120/work/aten/src/ATen/native/mps/operations/Indexin
g.mm:283.)
  nonzero_finite_vals = torch.masked_select(

tensor([1., 1., 1., 1., 1.], device='mps:0')

Note how even just displaying an MPS tensor throws a warning...

Expect that the more recent features in pytorch have rough edges!



Some python DL
frameworks:
1. Pytorch

2. Jax  Can be trickier to use, but well-respected and more suited for certain

problems

3. Keras  Aims at "standard" ML problems more than research

4. Tensorflow  Popularized by google corporate but bogged down with confusion

5. 

←

←
←

Wikipedia: Comparison of deep-learning software

https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software


There are so many options: Why Pytorch?
!"As we've seen, the interface is very close to numpy. If you know numpy, you can

already code in pytorch.

!"Documentation/Community Support:

#"

#"

!"Community Support

!"PyTorch is Pythonic -- the programming paradigm follows python seamlessly.

!"Rapid Development & Debugging

Link to documentation

Link to forums

https://pytorch.org/docs/stable/index.html
https://discuss.pytorch.org/
https://pytorch.org/docs/stable/index.html
https://discuss.pytorch.org/


Still not convinced?

How to print in pytorch:



Still not convinced?

How to print in pytorch:

x=th.Tensor([[1,2,3],[4,5,6]])
print(x)

tensor([[1., 2., 3.],
        [4., 5., 6.]])



Still not convinced?

How to print in pytorch:

x=th.Tensor([[1,2,3],[4,5,6]])
print(x)

tensor([[1., 2., 3.],
        [4., 5., 6.]])

313 upvotes -- best answer has three paragraphs plus two footnotes

(In all seriousness, things have gotten better in TensorFlow since this was posted. But we
still prefer PyTorch.)

stackoverflow: How to print the value of a Tensor object in TensorFlow?

JAX documentation: Runtime value debugging in JAX

TL;DR Use jax.debug.print()  to print values to stdout in
jax.jit -, jax.pmap -, and pjit-decorated 
functions , and jax.debug.breakpoint()  to pause
execution of your compiled function to inspect values in the call
stack.

https://stackoverflow.com/questions/33633370/how-to-print-the-value-of-a-tensor-object-in-tensorflow
https://jax.readthedocs.io/en/latest/debugging/index.html
https://stackoverflow.com/questions/33633370/how-to-print-the-value-of-a-tensor-object-in-tensorflow
https://jax.readthedocs.io/en/latest/debugging/index.html


Pytorch works seamlessly
with python functions



Pytorch works seamlessly
with python functions
def my_function(x):

print("Input x shape and dtype:",x.shape,x.dtype)
print("Input x values:",x)
y = x**2 - 2*x
return y



Pytorch works seamlessly
with python functions
def my_function(x):

print("Input x shape and dtype:",x.shape,x.dtype)
print("Input x values:",x)
y = x**2 - 2*x
return y

x = th.arange(4)
y = my_function(x)
print("Y =",y)

Input x shape and dtype: torch.Size([4]) torch.int64
Input x values: tensor([0, 1, 2, 3])
Y = tensor([ 0, -1,  0,  3])



Let's look more at devices and dtypes in pytorch
!"implicit upcasting does happen in pytorch



Let's look more at devices and dtypes in pytorch
!"implicit upcasting does happen in pytorch

x = th.arange(4,dtype=th.int)
y = th.arange(4,dtype=th.float)
x,y,x+y

(tensor([0, 1, 2, 3], dtype=torch.int32),
 tensor([0., 1., 2., 3.]),
 tensor([0., 2., 4., 6.]))



x = th.arange(4,dtype=th.float32)
y = th.arange(4,dtype=th.float64)
x,y,x+y

(tensor([0., 1., 2., 3.]),
 tensor([0., 1., 2., 3.], dtype=torch.float64),
 tensor([0., 2., 4., 6.], dtype=torch.float64))



x = th.arange(4,dtype=th.int)
y = th.ones(4,dtype=th.bool)
x,y,x+y

(tensor([0, 1, 2, 3], dtype=torch.int32),
 tensor([True, True, True, True]),
 tensor([1, 2, 3, 4], dtype=torch.int32))



Note that pytorch uses float32 by default:



Note that pytorch uses float32 by default:

th.float == th.float32

True



Note that pytorch uses float32 by default:

th.float == th.float32

True

th.float == th.float64

False



Note that pytorch uses float32 by default:

th.float == th.float32

True

th.float == th.float64

False

th.ones(1).dtype

torch.float32



!"The default floating point type can be changed though:



!"The default floating point type can be changed though:

th.set_default_dtype(th.float64)
print(th.ones(1).dtype)
th.set_default_dtype(th.float32)

torch.float64



There is likewise torch.cuda.set_device() for where new tensors are created (which GPU)
when a specific GPU is not explicitly specified.



There is likewise torch.cuda.set_device() for where new tensors are created (which GPU)
when a specific GPU is not explicitly specified.

th.cuda.set_device

<function torch.cuda.set_device(device: Union[torch.device, st
r, int, NoneType]) -> None>



Creating new tensors
The easiest way to create compatible tensors is to use the property of an existing tensor.

Just grab the dtype and device!



Creating new tensors
The easiest way to create compatible tensors is to use the property of an existing tensor.

Just grab the dtype and device!

x = th.arange(4,dtype=int)

y = th.ones(4,dtype=x.dtype,device=x.device)

# Also: 
y= th.ones_like(x)
# But note that this function gives the same shape as X, as well

# Can also be done like this:
y = x.new_ones(4)



Creating new tensors
The easiest way to create compatible tensors is to use the property of an existing tensor.

Just grab the dtype and device!

x = th.arange(4,dtype=int)

y = th.ones(4,dtype=x.dtype,device=x.device)

# Also: 
y= th.ones_like(x)
# But note that this function gives the same shape as X, as well

# Can also be done like this:
y = x.new_ones(4)

Note that the operation of creating a completely new tensor from scratch is comparatively
rare in most pytorch code; usually you create tensors by combining them with existing
tensors.



In-place operations
In-place operations are supported, but not encouraged. This has to do with how pytorch's
autograd works, more on that later.



In-place operations
In-place operations are supported, but not encouraged. This has to do with how pytorch's
autograd works, more on that later.

x = th.ones(4)
x[2]=3
x

tensor([1., 1., 3., 1.])



In-place operations can be 'dangerous' with autograd. But Pytorch will try to inform you
when in-place operations will break autograd!



In-place operations can be 'dangerous' with autograd. But Pytorch will try to inform you
when in-place operations will break autograd!

x = th.ones(4)
x.requires_grad_()
x[2]=3
x

----------------------------------------------------------------
-----------
RuntimeError                              Traceback (most recent 
call last)
Cell In[32], line 3
      1 x = th.ones(4)
      2 x.requires_grad_()
----> 3 x[2]=3
      4 x

RuntimeError: a view of a leaf Variable that requires grad is be
ing used in an in-place operation.



Note that there are cases where in-place operations work with autograd. But they are still
not a good idea -- they will not match the usual semantics precisely. (Usually one performs
in-place operations to save memory, but this will often not actually save memory when
using autograd)



Note that there are cases where in-place operations work with autograd. But they are still
not a good idea -- they will not match the usual semantics precisely. (Usually one performs
in-place operations to save memory, but this will often not actually save memory when
using autograd)

x = th.ones(4)
x.requires_grad_()

y = 2*x
print(y)
y[2]=3
print(y)

tensor([2., 2., 2., 2.], grad_fn=<MulBackward0>)
tensor([2., 2., 3., 2.], grad_fn=<CopySlices>)



Note that there are cases where in-place operations work with autograd. But they are still
not a good idea -- they will not match the usual semantics precisely. (Usually one performs
in-place operations to save memory, but this will often not actually save memory when
using autograd)

x = th.ones(4)
x.requires_grad_()

y = 2*x
print(y)
y[2]=3
print(y)

tensor([2., 2., 2., 2.], grad_fn=<MulBackward0>)
tensor([2., 2., 3., 2.], grad_fn=<CopySlices>)

Note here that the 'grad_fn' changed.



Pytorch can also be used to write generic
scientific code!
Recent support for linear algebra ( th.linalg ) libaries for FFT ( th.fft ), sparse
matrices ( th.sparse ) and even solving system of equations. While Numpy also has
these capabilities, Pytorch shines in enabling GPU-accelerated versions of popular matrix
operations. More Details here: .

We will now show a few examples of the capabilities.

https://pytorch.org/blog/torch-linalg-autograd/

https://pytorch.org/blog/torch-linalg-autograd/
https://pytorch.org/blog/torch-linalg-autograd/


Matrix operations and Decompositions



Matrix operations and Decompositions
N = 3
A = th.randn(N, N, dtype=th.complex128)
print("A is: ", A)

A is:  tensor([[-0.6456+0.4686j,  0.2998-0.1719j,  0.2149-0.4210
j],
        [ 1.0444-0.0777j, -1.0309-0.3838j, -0.1683+1.3113j],
        [ 0.2602+0.0985j, -0.4137-0.3570j, -0.1110-0.3575j]],
       dtype=torch.complex128)



Matrix operations and Decompositions
N = 3
A = th.randn(N, N, dtype=th.complex128)
print("A is: ", A)

A is:  tensor([[-0.6456+0.4686j,  0.2998-0.1719j,  0.2149-0.4210
j],
        [ 1.0444-0.0777j, -1.0309-0.3838j, -0.1683+1.3113j],
        [ 0.2602+0.0985j, -0.4137-0.3570j, -0.1110-0.3575j]],
       dtype=torch.complex128)

A.T.conj() # Hermitian conjugate

tensor([[-0.6456-0.4686j,  1.0444+0.0777j,  0.2602-0.0985j],
        [ 0.2998+0.1719j, -1.0309+0.3838j, -0.4137+0.3570j],
        [ 0.2149+0.4210j, -0.1683-1.3113j, -0.1110+0.3575j]],
       dtype=torch.complex128)



Matrix operations and Decompositions
N = 3
A = th.randn(N, N, dtype=th.complex128)
print("A is: ", A)

A is:  tensor([[-0.6456+0.4686j,  0.2998-0.1719j,  0.2149-0.4210
j],
        [ 1.0444-0.0777j, -1.0309-0.3838j, -0.1683+1.3113j],
        [ 0.2602+0.0985j, -0.4137-0.3570j, -0.1110-0.3575j]],
       dtype=torch.complex128)

A.T.conj() # Hermitian conjugate

tensor([[-0.6456-0.4686j,  1.0444+0.0777j,  0.2602-0.0985j],
        [ 0.2998+0.1719j, -1.0309+0.3838j, -0.4137+0.3570j],
        [ 0.2149+0.4210j, -0.1683-1.3113j, -0.1110+0.3575j]],
       dtype=torch.complex128)

D = th.eye(N) #diagonal matrix
print("Diagonal matrix is: ", D)

Diagonal matrix is:  tensor([[1., 0., 0.],
        [0., 1., 0.],
        [0., 0., 1.]])



B = A @ A.T.conj() + D 
print(B)

tensor([[ 1.9793+0.0000j, -1.5421+0.5207j, -0.0578+0.4873j],
        [-1.5421-0.5207j,  5.0547+0.0000j,  0.3775-0.5381j],
        [-0.0578-0.4873j,  0.3775+0.5381j,  1.5162+0.0000j]],
       dtype=torch.complex128)



B = A @ A.T.conj() + D 
print(B)

tensor([[ 1.9793+0.0000j, -1.5421+0.5207j, -0.0578+0.4873j],
        [-1.5421-0.5207j,  5.0547+0.0000j,  0.3775-0.5381j],
        [-0.0578-0.4873j,  0.3775+0.5381j,  1.5162+0.0000j]],
       dtype=torch.complex128)

The @ tells Pytorch that this is matrix multiplication, and it will use efficient routines to
compute the output. This notation is convenient with Python PEP 465. (The "@" operator
was invented for numpy)



Cholesky Decomposition



Cholesky Decomposition
L = th.linalg.cholesky(B)
L

tensor([[ 1.4069+0.0000j,  0.0000+0.0000j,  0.0000+0.0000j],
        [-1.0961-0.3701j,  1.9278+0.0000j,  0.0000+0.0000j],
        [-0.0411-0.3464j,  0.1060+0.0901j,  1.1727+0.0000j]],
       dtype=torch.complex128)



Cholesky Decomposition
L = th.linalg.cholesky(B)
L

tensor([[ 1.4069+0.0000j,  0.0000+0.0000j,  0.0000+0.0000j],
        [-1.0961-0.3701j,  1.9278+0.0000j,  0.0000+0.0000j],
        [-0.0411-0.3464j,  0.1060+0.0901j,  1.1727+0.0000j]],
       dtype=torch.complex128)

L.T.conj()

tensor([[ 1.4069-0.0000j, -1.0961+0.3701j, -0.0411+0.3464j],
        [ 0.0000-0.0000j,  1.9278-0.0000j,  0.1060-0.0901j],
        [ 0.0000-0.0000j,  0.0000-0.0000j,  1.1727-0.0000j]],
       dtype=torch.complex128)



Cholesky Decomposition
L = th.linalg.cholesky(B)
L

tensor([[ 1.4069+0.0000j,  0.0000+0.0000j,  0.0000+0.0000j],
        [-1.0961-0.3701j,  1.9278+0.0000j,  0.0000+0.0000j],
        [-0.0411-0.3464j,  0.1060+0.0901j,  1.1727+0.0000j]],
       dtype=torch.complex128)

L.T.conj()

tensor([[ 1.4069-0.0000j, -1.0961+0.3701j, -0.0411+0.3464j],
        [ 0.0000-0.0000j,  1.9278-0.0000j,  0.1060-0.0901j],
        [ 0.0000-0.0000j,  0.0000-0.0000j,  1.1727-0.0000j]],
       dtype=torch.complex128)

L @ L.T.conj()

tensor([[ 1.9793+0.0000j, -1.5421+0.5207j, -0.0578+0.4873j],
        [-1.5421-0.5207j,  5.0547+0.0000j,  0.3775-0.5381j],
        [-0.0578-0.4873j,  0.3775+0.5381j,  1.5162+0.0000j]],
       dtype=torch.complex128)



We know that Cholesky decomposition for a matrix B is . Lets check our computation with a
nifty utility called allclose  in Pytorch. It asks you to provide two tensors for comparison,
and a relative tolerance within which they can be deemed to be the same. Default tolerance
is .



We know that Cholesky decomposition for a matrix B is . Lets check our computation with a
nifty utility called allclose  in Pytorch. It asks you to provide two tensors for comparison,
and a relative tolerance within which they can be deemed to be the same. Default tolerance
is .

th.allclose(B, L @ L.T.conj(), rtol=1e-07)

True



QR Decomposition
Quite common, where we decompose a square matrix into an orthogonal matrix and an
upper triangular matrix



QR Decomposition
Quite common, where we decompose a square matrix into an orthogonal matrix  and an
upper triangular matrix 

Q, R = th.linalg.qr(B)



QR Decomposition
Quite common, where we decompose a square matrix into an orthogonal matrix  and an
upper triangular matrix 

Q, R = th.linalg.qr(B)

Q

tensor([[-0.7586+0.0000e+00j, -0.5884+2.0440e-01j,  0.0013+1.91
22e-01j],
        [ 0.5910+1.9956e-01j, -0.7784-4.4779e-03j,  0.0538-4.57
51e-02j],
        [ 0.0222+1.8676e-01j, -0.0034+7.8565e-02j, -0.9790-2.57
26e-18j]],
       dtype=torch.complex128)



QR Decomposition
Quite common, where we decompose a square matrix into an orthogonal matrix  and an
upper triangular matrix 

Q, R = th.linalg.qr(B)

Q

tensor([[-0.7586+0.0000e+00j, -0.5884+2.0440e-01j,  0.0013+1.91
22e-01j],
        [ 0.5910+1.9956e-01j, -0.7784-4.4779e-03j,  0.0538-4.57
51e-02j],
        [ 0.0222+1.8676e-01j, -0.0034+7.8565e-02j, -0.9790-2.57
26e-18j]],
       dtype=torch.complex128)

R

tensor([[-2.6091+0.0000j,  4.2662-1.4623j,  0.1932-1.0462j],
        [ 0.0000+0.0000j, -2.8796+0.0000j, -0.1630+0.0265j],
        [ 0.0000+0.0000j,  0.0000+0.0000j, -1.3463+0.0000j]],
       dtype=torch.complex128)



Again, lets double check our results



Again, lets double check our results

th.allclose(B, Q @ R)

True



Eigenvalue decomposition
Pytorch even has various flavors of Eigenvalue decomposition!



Eigenvalue decomposition
Pytorch even has various flavors of Eigenvalue decomposition!

eigvals, eigvecs = th.linalg.eig(B)



Eigenvalue decomposition
Pytorch even has various flavors of Eigenvalue decomposition!

eigvals, eigvecs = th.linalg.eig(B)

eigvals

tensor([5.9008-2.0839e-16j, 1.1233-9.1986e-18j, 1.5260-4.4529e-
18j],
       dtype=torch.complex128)



eigval_matrix = th.diag_embed(eigvals) # convert a 1D array to an equivalent diagonal mat



eigval_matrix = th.diag_embed(eigvals) # convert a 1D array to an equivalent diagonal mat

eigval_matrix

tensor([[5.9008-2.0839e-16j, 0.0000+0.0000e+00j, 0.0000+0.0000
e+00j],
        [0.0000+0.0000e+00j, 1.1233-9.1986e-18j, 0.0000+0.0000
e+00j],
        [0.0000+0.0000e+00j, 0.0000+0.0000e+00j, 1.5260-4.4529e
-18j]],
       dtype=torch.complex128)



eigval_matrix = th.diag_embed(eigvals) # convert a 1D array to an equivalent diagonal mat

eigval_matrix

tensor([[5.9008-2.0839e-16j, 0.0000+0.0000e+00j, 0.0000+0.0000
e+00j],
        [0.0000+0.0000e+00j, 1.1233-9.1986e-18j, 0.0000+0.0000
e+00j],
        [0.0000+0.0000e+00j, 0.0000+0.0000e+00j, 1.5260-4.4529e
-18j]],
       dtype=torch.complex128)

eigvecs

tensor([[-0.3743+0.1294j,  0.7604+0.0000j,  0.0720+0.5097j],
        [ 0.9006+0.0000j,  0.2200+0.0354j, -0.1263+0.3511j],
        [ 0.0969+0.1504j, -0.0510+0.6079j,  0.7719+0.0000j]],
       dtype=torch.complex128)



eigval_matrix = th.diag_embed(eigvals) # convert a 1D array to an equivalent diagonal mat

eigval_matrix

tensor([[5.9008-2.0839e-16j, 0.0000+0.0000e+00j, 0.0000+0.0000
e+00j],
        [0.0000+0.0000e+00j, 1.1233-9.1986e-18j, 0.0000+0.0000
e+00j],
        [0.0000+0.0000e+00j, 0.0000+0.0000e+00j, 1.5260-4.4529e
-18j]],
       dtype=torch.complex128)

eigvecs

tensor([[-0.3743+0.1294j,  0.7604+0.0000j,  0.0720+0.5097j],
        [ 0.9006+0.0000j,  0.2200+0.0354j, -0.1263+0.3511j],
        [ 0.0969+0.1504j, -0.0510+0.6079j,  0.7719+0.0000j]],
       dtype=torch.complex128)

th.allclose(eigvecs @ eigval_matrix @ th.linalg.inv(eigvecs) , B) #Checking solution

True



Solve system of linear equations
Solve



Solve system of linear equations
Solve 

A = th.randn(N, N, dtype=th.float32)
b = th.ones(N, dtype=th.float32)
print("A is: ", A)
print("b is: ", b)

A is:  tensor([[-0.5344,  0.2178,  0.8357],
        [-1.3800,  0.2744,  0.1503],
        [-0.9498, -0.3696,  1.1155]])
b is:  tensor([1., 1., 1.])



Solve system of linear equations
Solve 

A = th.randn(N, N, dtype=th.float32)
b = th.ones(N, dtype=th.float32)
print("A is: ", A)
print("b is: ", b)

A is:  tensor([[-0.5344,  0.2178,  0.8357],
        [-1.3800,  0.2744,  0.1503],
        [-0.9498, -0.3696,  1.1155]])
b is:  tensor([1., 1., 1.])

x = th.linalg.solve(A, b)
print("Solution x is: ", x)

Solution x is:  tensor([-0.5123,  0.6906,  0.6890])



Solve system of linear equations
Solve 

A = th.randn(N, N, dtype=th.float32)
b = th.ones(N, dtype=th.float32)
print("A is: ", A)
print("b is: ", b)

A is:  tensor([[-0.5344,  0.2178,  0.8357],
        [-1.3800,  0.2744,  0.1503],
        [-0.9498, -0.3696,  1.1155]])
b is:  tensor([1., 1., 1.])

x = th.linalg.solve(A, b)
print("Solution x is: ", x)

Solution x is:  tensor([-0.5123,  0.6906,  0.6890])

th.allclose(A @ x, b) # verify

True



Fourier and inverse Fourier Transforms
Lets use from the previous example



Fourier and inverse Fourier Transforms
Lets use  from the previous example

x_fft = th.fft.fft(x)
x_fft_inverse = th.fft.ifft(x_fft)



Fourier and inverse Fourier Transforms
Lets use  from the previous example

x_fft = th.fft.fft(x)
x_fft_inverse = th.fft.ifft(x_fft)

print("real domain: ", x)
print("Fourier domain: ", x_fft)
print("Inverse of Fourier domain: ", x_fft_inverse)
print(th.allclose(th.real(x_fft_inverse),x))

real domain:  tensor([-0.5123,  0.6906,  0.6890])
Fourier domain:  tensor([ 0.8673+0.0000j, -1.2021-0.0013j, -1.20
21+0.0013j])
Inverse of Fourier domain:  tensor([-0.5123+0.j,  0.6906+0.j,  
0.6890+0.j])
True



Sparse Matrix Operations
Pytorch has the ability to take advantage of performance benefits when performing sparse
matrix operations with th.sparse

Lets define a dense matrix with very few non-zero elements and convert it into a sparse
matrix





Sparse Matrix Operations
Pytorch has the ability to take advantage of performance benefits when performing sparse
matrix operations with th.sparse

Lets define a dense matrix with very few non-zero elements and convert it into a sparse
matrix

# Create arbitrary diagonal matrices so there are many "zero" elements
a = th.diag_embed(th.tensor([1.0,1.0,1.0,1.0,1.0,1.0,1.0]))
b = th.diag_embed(th.randn(7))
print('a is: ', a)
print('b is: ', b)



a is:  tensor([[1., 0., 0., 0., 0., 0., 0.],
        [0., 1., 0., 0., 0., 0., 0.],
        [0., 0., 1., 0., 0., 0., 0.],
        [0., 0., 0., 1., 0., 0., 0.],
        [0., 0., 0., 0., 1., 0., 0.],
        [0., 0., 0., 0., 0., 1., 0.],
        [0., 0., 0., 0., 0., 0., 1.]])
b is:  tensor([[ 0.5963,  0.0000,  0.0000,  0.0000,  0.0000,  0.
0000,  0.0000],
        [ 0.0000,  0.9775,  0.0000,  0.0000,  0.0000,  0.0000,  
0.0000],
        [ 0.0000,  0.0000, -0.1606,  0.0000,  0.0000,  0.0000,  
0.0000],
        [ 0.0000,  0.0000,  0.0000, -0.7291,  0.0000,  0.0000,  
0.0000],
        [ 0.0000,  0.0000,  0.0000,  0.0000,  1.0850,  0.0000,  
0.0000],
        [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  2.0574,  
0.0000],
        [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  
0.9218]])



Convert diagonal matrices to CSR sparse layout
https://en.wikipedia.org
/wiki/Sparse_matrix#Compressed_sparse_row_(CSR,_CRS_or_Yale_format)

https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_(CSR,_CRS_or_Yale_format)
https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_(CSR,_CRS_or_Yale_format)
https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_(CSR,_CRS_or_Yale_format)
https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_(CSR,_CRS_or_Yale_format)




Convert diagonal matrices to CSR sparse layout
https://en.wikipedia.org
/wiki/Sparse_matrix#Compressed_sparse_row_(CSR,_CRS_or_Yale_format)

sp_a = a.to_sparse_csr()
sp_b = b.to_sparse_csr()

/var/folders/01/5fs_12112d51__2md2crbk70000tpn/T/ipykernel_71682
/1102660417.py:1: UserWarning: Sparse CSR tensor support is in b
eta state. If you miss a functionality in the sparse tensor supp
ort, please submit a feature request to https://github.com/pytor
ch/pytorch/issues. (Triggered internally at /Users/runner/work/_
temp/anaconda/conda-bld/pytorch_1711403226120/work/aten/src/ATen
/SparseCsrTensorImpl.cpp:55.)
  sp_a = a.to_sparse_csr()

https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_(CSR,_CRS_or_Yale_format)
https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_(CSR,_CRS_or_Yale_format)
https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_(CSR,_CRS_or_Yale_format)
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Convert diagonal matrices to CSR sparse layout
https://en.wikipedia.org
/wiki/Sparse_matrix#Compressed_sparse_row_(CSR,_CRS_or_Yale_format)

sp_a = a.to_sparse_csr()
sp_b = b.to_sparse_csr()

/var/folders/01/5fs_12112d51__2md2crbk70000tpn/T/ipykernel_71682
/1102660417.py:1: UserWarning: Sparse CSR tensor support is in b
eta state. If you miss a functionality in the sparse tensor supp
ort, please submit a feature request to https://github.com/pytor
ch/pytorch/issues. (Triggered internally at /Users/runner/work/_
temp/anaconda/conda-bld/pytorch_1711403226120/work/aten/src/ATen
/SparseCsrTensorImpl.cpp:55.)
  sp_a = a.to_sparse_csr()

sp_a,sp_b

https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_(CSR,_CRS_or_Yale_format)
https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_(CSR,_CRS_or_Yale_format)
https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_(CSR,_CRS_or_Yale_format)
https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_(CSR,_CRS_or_Yale_format)


(tensor(crow_indices=tensor([0, 1, 2, 3, 4, 5, 6, 7]),
        col_indices=tensor([0, 1, 2, 3, 4, 5, 6]),
        values=tensor([1., 1., 1., 1., 1., 1., 1.]), size=(7, 
7), nnz=7,
        layout=torch.sparse_csr),
 tensor(crow_indices=tensor([0, 1, 2, 3, 4, 5, 6, 7]),
        col_indices=tensor([0, 1, 2, 3, 4, 5, 6]),
        values=tensor([ 0.5963,  0.9775, -0.1606, -0.7291,  1.0
850,  2.0574,
                        0.9218]), size=(7, 7), nnz=7, layout=to
rch.sparse_csr))



Perform sparse matrix multiplication with th.matmul  or the @  operator:



Perform sparse matrix multiplication with th.matmul  or the @  operator:

sp_matmul = sp_a @ sp_b
print(sp_matmul)

----------------------------------------------------------------
-----------
RuntimeError                              Traceback (most recent 
call last)
Cell In[60], line 1
----> 1 sp_matmul = sp_a @ sp_b
      2 print(sp_matmul)

RuntimeError: addmm: computation on CPU is not implemented for S
parseCsr + SparseCsr @ SparseCsr without MKL. PyTorch built with 
MKL has better support for addmm with sparse CPU tensors.



Perform sparse matrix multiplication with th.matmul  or the @  operator:

sp_matmul = sp_a @ sp_b
print(sp_matmul)

----------------------------------------------------------------
-----------
RuntimeError                              Traceback (most recent 
call last)
Cell In[60], line 1
----> 1 sp_matmul = sp_a @ sp_b
      2 print(sp_matmul)

RuntimeError: addmm: computation on CPU is not implemented for S
parseCsr + SparseCsr @ SparseCsr without MKL. PyTorch built with 
MKL has better support for addmm with sparse CPU tensors.

Alas, this is an example of missing support for some platforms (MKL not available for ARM)



Convert back to dense to print out the full matrix with built-in converter



Convert back to dense to print out the full matrix with built-in converter

dense_a = sp_a.to_dense()
print('Matmul solution: ', dense_a)

Matmul solution:  tensor([[1., 0., 0., 0., 0., 0., 0.],
        [0., 1., 0., 0., 0., 0., 0.],
        [0., 0., 1., 0., 0., 0., 0.],
        [0., 0., 0., 1., 0., 0., 0.],
        [0., 0., 0., 0., 1., 0., 0.],
        [0., 0., 0., 0., 0., 1., 0.],
        [0., 0., 0., 0., 0., 0., 1.]])



These are just a few examples: Check Pytorch documentation for a full list of capabilities!

But why does a DL library like Pytorch have these capabilities, you ask? That is because
you can even  and train them
seamlessly! This is more than just doing math (which you are welcome to do), but highly
customizable machine learning models.

embed these operations inside your neural networks

https://pytorch.org/blog/torch-linalg-autograd/
https://pytorch.org/blog/torch-linalg-autograd/


Automatic Di"erentiation in
PyTorch

!"Here we will explore how PyTorch is able to easily perform the gradient operations
needed for training the network

!"There are a few ways to actually implement backwards automatic differentiation - I
will focus on how it is done in pytorch. The principles are always similar.



## This package was INCREDIBLY helpful for this tutorial.
## I want to emphasize that the plots shown here are made by 
## live inspection of python objects in memory.
from torchviz import make_dot

######                     V This is what we want to learn about
from torch.autograd import grad



Let's revisit the example from the first part:



Let's revisit the example from the first part:

x = th.linspace(0,2*np.pi,20)
x.requires_grad_(True) # <- What is this?
y = th.sin(x)
y_prime = grad(y.sum(),x)[0]
fig, ax = plt.subplots(1,1,figsize=(4,3))
plt.plot(x.detach().numpy(),y.detach().numpy(),label="y=sin(x)")
plt.xlabel("x")
plt.plot(x.detach().numpy(),y_prime.numpy(),label="Some magic from torch.Autograd"
plt.legend(loc=8)
plt.show()



Taking the gradient on y.sum() gives us a tensor that looks like the derivative of x Let's
compare this against a .backward()  call.





 Taking the gradient on y.sum() gives us a tensor that looks like the derivative of x Let's
compare this against a .backward()  call.

x = th.linspace(0,2*np.pi,20)
x.requires_grad_(True) # <- ???
y = th.sin(x)

y.sum().backward()

plt.figure(figsize=(6,3))
plt.plot(x.detach().numpy(),y_prime.detach().numpy(),label="gradient operation"
plt.plot(x.detach().numpy(),x.grad.numpy(),label="x.grad from bacakwards"
plt.plot(x.detach().numpy(),np.cos(x.detach().numpy()),label="cos(x)",ls
plt.xlabel("x")
plt.legend()
plt.show()





print("x.grad:",x.grad)
print("y_prime:",y_prime)
print("x.grad is y_prime:",x.grad is y_prime)

x.grad: tensor([ 1.0000,  0.9458,  0.7891,  0.5469,  0.2455, -0.
0826, -0.4017, -0.6773,
        -0.8795, -0.9864, -0.9864, -0.8795, -0.6773, -0.4017, -
0.0826,  0.2455,
         0.5469,  0.7891,  0.9458,  1.0000])
y_prime: tensor([ 1.0000,  0.9458,  0.7891,  0.5469,  0.2455, -
0.0826, -0.4017, -0.6773,
        -0.8795, -0.9864, -0.9864, -0.8795, -0.6773, -0.4017, -
0.0826,  0.2455,
         0.5469,  0.7891,  0.9458,  1.0000])
x.grad is y_prime: False



print("x.grad:",x.grad)
print("y_prime:",y_prime)
print("x.grad is y_prime:",x.grad is y_prime)

x.grad: tensor([ 1.0000,  0.9458,  0.7891,  0.5469,  0.2455, -0.
0826, -0.4017, -0.6773,
        -0.8795, -0.9864, -0.9864, -0.8795, -0.6773, -0.4017, -
0.0826,  0.2455,
         0.5469,  0.7891,  0.9458,  1.0000])
y_prime: tensor([ 1.0000,  0.9458,  0.7891,  0.5469,  0.2455, -
0.0826, -0.4017, -0.6773,
        -0.8795, -0.9864, -0.9864, -0.8795, -0.6773, -0.4017, -
0.0826,  0.2455,
         0.5469,  0.7891,  0.9458,  1.0000])
x.grad is y_prime: False

So backward  and grad  are in this example doing something similar to each other, which
in this example produces cos(x) , but as different results. We'll cover the differences
later.



What's up with that detach  stu" anyway?
Let's see what happens if we just skip it:



What's up with that detach  stu" anyway?
Let's see what happens if we just skip it:

x.numpy()

----------------------------------------------------------------
-----------
RuntimeError                              Traceback (most recent 
call last)
Cell In[67], line 1
----> 1 x.numpy()

RuntimeError: Can't call numpy() on Tensor that requires grad. U
se tensor.detach().numpy() instead.



We got a relatively helpful error message that tells us how to "solve" the problem.

But why is it there?

To prevent accidentally breaking the automatic differentiation features.

Autograd requires tracking what operations are applied to differentiable variables. When
you convert to numpy, without the extra metadata from pytorch, the operations on the array
can't be tracked.

You can also use x.data . I recommend against getting in such a habit: x.data is unsafe
with respect to autograd.



Views in autograd
Different copies of the same information can be created.



Views in autograd
Different copies of the same information can be created.

x = th.arange(3,dtype=th.get_default_dtype()).requires_grad_(True)
print(x) # x viewed from "inside of the autograd system"
print(x.clone()) # A fresh copy of x that is "inside the autograd system"
print(x.data) # x viewed from "outside of the autograd system"
print('pointers:',x.data_ptr(),x.clone().data_ptr(),x.data.data_ptr())

tensor([0., 1., 2.], requires_grad=True)
tensor([0., 1., 2.], grad_fn=<CloneBackward0>)
tensor([0., 1., 2.])
pointers: 5158864064 4620276416 5158864064



Views in autograd
Different copies of the same information can be created.

x = th.arange(3,dtype=th.get_default_dtype()).requires_grad_(True)
print(x) # x viewed from "inside of the autograd system"
print(x.clone()) # A fresh copy of x that is "inside the autograd system"
print(x.data) # x viewed from "outside of the autograd system"
print('pointers:',x.data_ptr(),x.clone().data_ptr(),x.data.data_ptr())

tensor([0., 1., 2.], requires_grad=True)
tensor([0., 1., 2.], grad_fn=<CloneBackward0>)
tensor([0., 1., 2.])
pointers: 5158864064 4620276416 5158864064

So ultimately, they all point at the same memory location. It's just the metadata that is
different.



Unused inputs





Unused inputs
x = th.Tensor([1,2,3]).requires_grad_(True)
x2 = x.clone()
y = x.sum()





Unused inputs
x = th.Tensor([1,2,3]).requires_grad_(True)
x2 = x.clone()
y = x.sum()

grad(y,[x,x2])



----------------------------------------------------------------
-----------
RuntimeError                              Traceback (most recent 
call last)
Cell In[70], line 1
----> 1 grad(y,[x,x2])

File ~/opt/miniconda3/envs/torch_tutorial/lib/python3.12/site-pa
ckages/torch/autograd/__init__.py:411, in grad(outputs, inputs, 
grad_outputs, retain_graph, create_graph, only_inputs, allow_unu
sed, is_grads_batched, materialize_grads)
    407     result = _vmap_internals._vmap(vjp, 0, 0, allow_none
_pass_through=True)(
    408         grad_outputs_
    409     )
    410 else:
--> 411     result = Variable._execution_engine.run_backward(  # 
Calls into the C++ engine to run the backward pass
    412         t_outputs,
    413         grad_outputs_,
    414         retain_graph,
    415         create_graph,
    416         inputs,
    417         allow_unused,
    418         accumulate_grad=False,
    419     )  # Calls into the C++ engine to run the backward p
ass
    420 if materialize_grads:
    421 if any(
    422         result[i] is None and not is_tensor_like(inputs
[i])
    423 for i in (len(inputs))



Okay, let's skip the traceback which is unnecessarily long.



Okay, let's skip the traceback which is unnecessarily long.

with suppress_traceback(): 
grad(y,[x,x2])

RuntimeError: One of the differentiated Tensors appears to not h
ave been used in the graph. Set allow_unused=True if this is the 
desired behavior.



Okay, let's skip the traceback which is unnecessarily long.

with suppress_traceback(): 
grad(y,[x,x2])

RuntimeError: One of the differentiated Tensors appears to not h
ave been used in the graph. Set allow_unused=True if this is the 
desired behavior.

This returns an error because x2  has been detached from autograd, so it doesn't appear
to have anything to do with y .

Note: suppress_traceback is just a convenience function defined in the notebook version of
these slides. It only skips the full traceback by printing the error message directly.



Allow_unused
The allowed_unused  flag will tell pytorch to forgive you for taking the gradients that are
ill-defined



Allow_unused
The allowed_unused  flag will tell pytorch to forgive you for taking the gradients that are
ill-defined

gradient_x, gradient_x2 = grad(y,[x,x2],allow_unused=True)
print("gradient_x:",gradient_x)
print("gradient_x2:",gradient_x2)

gradient_x: tensor([1., 1., 1.])
gradient_x2: None



Allow_unused
The allowed_unused  flag will tell pytorch to forgive you for taking the gradients that are
ill-defined

gradient_x, gradient_x2 = grad(y,[x,x2],allow_unused=True)
print("gradient_x:",gradient_x)
print("gradient_x2:",gradient_x2)

gradient_x: tensor([1., 1., 1.])
gradient_x2: None

If something is not part of the computation and we pass allow_unused=True , the
gradient is simply None



The autograd graph



The autograd graph
It is possible to inspect how functions in autograd are linked together.



The autograd graph
It is possible to inspect how functions in autograd are linked together.

x = th.Tensor([1,2,3]).requires_grad_(True)
y = x.sum()
print('y:',y)
## `y.grad_fn` is a container for autograd
print('y.grad_fn :',y.grad_fn) 
## Among other things, it contains links to other functions that have been applied to the
print('y.grad_fn.next_functions :',y.grad_fn.next_functions) 

y: tensor(6., grad_fn=<SumBackward0>)
y.grad_fn : <SumBackward0 object at 0x137d77f70>
y.grad_fn.next_functions : ((<AccumulateGrad object at 0x137d62f
e0>, 0),)



The autograd graph
It is possible to inspect how functions in autograd are linked together.

x = th.Tensor([1,2,3]).requires_grad_(True)
y = x.sum()
print('y:',y)
## `y.grad_fn` is a container for autograd
print('y.grad_fn :',y.grad_fn) 
## Among other things, it contains links to other functions that have been applied to the
print('y.grad_fn.next_functions :',y.grad_fn.next_functions) 

y: tensor(6., grad_fn=<SumBackward0>)
y.grad_fn : <SumBackward0 object at 0x137d77f70>
y.grad_fn.next_functions : ((<AccumulateGrad object at 0x137d62f
e0>, 0),)

We could try to untangle this manually. However, this will be a cumbersome way to
investigate. Part of the difficulty is that a lot of autograd is written in C++ rather than
Python.



Visualizing the autograd graph
Luckily the torchviz  package has come to the rescue with torchviz.make_dot()



Visualizing the autograd graph
Luckily the torchviz  package has come to the rescue with torchviz.make_dot()

()

SumBackward0

AccumulateGrad

(3)

x = th.Tensor([1,2,3]).requires_grad_(True)
y = x.sum()
make_dot(y)



Visualizing the autograd graph
Luckily the torchviz  package has come to the rescue with torchviz.make_dot()

()

SumBackward0

AccumulateGrad

(3)

x = th.Tensor([1,2,3]).requires_grad_(True)
y = x.sum()
make_dot(y)

!"Blue boxes are inputs.

!"The green box is the thing we asked to visualize

#"In this case, y was the sum of x.



We can annotate tensors with names to understand this graph better.



We can annotate tensors with names to understand this graph better.

()

SumBackward0

AccumulateGrad

x
(3)

make_dot(y,params={"x":x})



We can annotate tensors with names to understand this graph better.

()

SumBackward0

AccumulateGrad

x
(3)

make_dot(y,params={"x":x})

(Digression: why is it necessary to add a name dict directly?)



()

MulBackward0

MulBackward0

AccumulateGrad

x
()

AccumulateGrad

y
()

AccumulateGrad

z
()

x,y,z = th.rand(3)
x.requires_grad_(True)
y.requires_grad_(True)
z.requires_grad_(True)
x_clone = x.clone()
w = (x*y)*z
make_dot(w,{'x':x,'y':y,'z':z,'x_clone':x_clone})



!"Blue boxes are inputs.

!"Grey boxes are intermediate operations

#"We need to save their values in memory in order to calculate gradients

later.

!"The green box is the thing we asked to visualize.

Tip: Because of the interrmedate storage, sometimes you can cause memory leaks
by performing too many options that require gradient. The solution is to use the
torch.autograd.no_grad  context manager



torch.autograd.no_grad





torch.autograd.no_grad

()

x,y,z = th.rand(3)

x.requires_grad_(True)
y.requires_grad_(True)
z.requires_grad_(True)

with th.autograd.no_grad():
w = (x*y)*z

v = (x*y)*z    

print("Graph for w:")
display(make_dot(w,{'x':x,'y':y,'z':z}))
print("Graph for v:")
display(make_dot(v,{'x':x,'y':y,'z':z}))

Graph for w:

Graph for v:



()

MulBackward0

MulBackward0

AccumulateGrad

x
()

AccumulateGrad

y
()

AccumulateGrad

z
()



torch.autograd.no_grad

()

x,y,z = th.rand(3)

x.requires_grad_(True)
y.requires_grad_(True)
z.requires_grad_(True)

with th.autograd.no_grad():
w = (x*y)*z

v = (x*y)*z    

print("Graph for w:")
display(make_dot(w,{'x':x,'y':y,'z':z}))
print("Graph for v:")
display(make_dot(v,{'x':x,'y':y,'z':z}))

Graph for w:

Graph for v:



()

MulBackward0

MulBackward0

AccumulateGrad

x
()

AccumulateGrad

y
()

AccumulateGrad

z
()

Within the scope of the with  block, things that require gradient were not saved. When
the with_block is complete, autograd is returned to its prior state.



torch.autograd.enable_grad()



with th.autograd.no_grad(): # autograd is off in this block
with th.autograd.enable_grad(): # autograd is on in this block

w = (x*y)*z    
v = (x+y) # Back to autograd off



Graph for W:



Graph for W:

()

MulBackward0

MulBackward0

AccumulateGrad

x
()

AccumulateGrad

y
()

AccumulateGrad

z
()

display(make_dot(w,{'x':x,'y':y,'z':z}))



Graph for v:



Graph for v:

()

display(make_dot(v,{'x':x,'y':y,'z':z}))



Notes:

!"It is also possible to manage autograd state using

autograd.set_grad_enabled(state)  where state is a boolean. This behaves

like enable_grad  or no_grad  respectively.

!"You can use set_grad_enabled  an imperative function call rather than as a

decorator, but this will most likely be more complicated code as you have to

remember to change it again if you want it to go back.

!"The documentation for no_grad  says that it has no effect when inside an

enable_grad  context. But that doesn't seem to be the case, as we can check:



()

with th.autograd.enable_grad():
## autograd is off in this block
with th.autograd.no_grad():

# autograd is on in this block
w = (x*y)*z
print("w requires grad:",w.requires_grad)

## Back to autograd off
v = (x+y)    
print("v requires grad:",w.requires_grad)

print("Graph for w:")
display(make_dot(w,{'x':x,'y':y,'z':z}))

print("Graph for v:")
display(make_dot(v,{'x':x,'y':y,'z':z}))
# autograd is on in this block

w requires grad: False
v requires grad: False
Graph for w:

Graph for v:



()

AddBackward0

AccumulateGrad

x
()

AccumulateGrad

y
()



Pytorch grad modes

https://pytorch.org/docs/stable/notes/autograd.html#grad-modes
https://pytorch.org/docs/stable/notes/autograd.html#grad-modes


A basic neural net
Let's look at a simple network, that doesn't even include activations:

net = nn.Sequential()
net.add_module("FIRST",nn.Linear(1,1))

x = th.rand(5,1) # Note batch axis with batch size 5
y = net(x)

make_dot(y,params=dict(net.named_parameters()))



(5, 1)

AddmmBackward0

AccumulateGrad

FIRST.bias
(1)

TBackward0

AccumulateGrad

FIRST.weight
(1, 1)



!"Its weights and biases appear

!"The shape of parameters is shown



(5, 20)

AddmmBackward0

AccumulateGrad

SECOND.bias
(20)

AddmmBackward0

AccumulateGrad

FIRST.bias
(10)

TBackward0

AccumulateGrad

FIRST.weight
(10, 1)

TBackward0

AccumulateGrad

SECOND.weight
(20, 10)

x = th.rand(5,1)

net = nn.Sequential()
net.add_module("FIRST",nn.Linear(1,10))
net.add_module("SECOND",nn.Linear(10,20))

y = net(x)
make_dot(y,params=dict(net.named_parameters()))





Now we can see two weights and two biases. Let's check a many-layer network with
different sized layers.



x = th.rand(5,1)

net = nn.Sequential()
sizes = [1,10,40,20,1]

for i,(n_in,n_out) in enumerate(zip(sizes[:-1],sizes[1:])):
net.add_module(f"LAYER {i}",nn.Linear(n_in,n_out))
net.add_module(f"ACTIVATION {i}",nn.ReLU())

print(net)
y = net(x)

Sequential(
  (LAYER 0): Linear(in_features=1, out_features=10, bias=True)
  (ACTIVATION 0): ReLU()
  (LAYER 1): Linear(in_features=10, out_features=40, bias=True)
  (ACTIVATION 1): ReLU()
  (LAYER 2): Linear(in_features=40, out_features=20, bias=True)
  (ACTIVATION 2): ReLU()
  (LAYER 3): Linear(in_features=20, out_features=1, bias=True)
  (ACTIVATION 3): ReLU()
)



make_dot(y,params=dict(net.named_parameters()))



LAYER 3.bias
(1) AddmmBackward0

AccumulateGrad

LAYER 2.bias
(20)

ReluBackward0

AddmmBackward0

AccumulateGrad

LAYER 1.bias
(40)

ReluBackward0

AddmmBackward0

AccumulateGrad

LAYER 0.bias
(10)

TBackward0

AccumulateGrad

LAYER 0.weight
(10, 1)

TBackward0

AccumulateGrad

LAYER 1.weight
(40, 10)

TBackward0

AccumulateGrad

LAYER 2.weight
(20, 40)

AccumulateGrad

LAYER 3.weight
(1, 20)



Small detail: TBackward  is a reflection of the fact that calculations are implemented as
follows:

such that the batch axis comes first in X.

Xn+1 = Xn ⋅ W T + b



Tape-based autograd
Pytorch is watching

!"This form of automatic differentiation is called Tape-Based Autograd. All operations
on tensors that have the <thing>.requires_grad == True  are recorded.

!"But how can this help us compute the gradients we need for training?

!"How does backward relate to forward?

!"What is the difference between grad  and .backward() ?



The chain rule
You might remember from calculus:

Suppose:

x(t)

y(t)

f(x, y)

= ∗ + ∗∂f

∂t

∂f

∂x
∂x
∂t

∂f

∂y

∂y

∂t



Consider the following situation:

!"f(x,y) is a 'height' over a 2-d landscape

!"x and y are coordinate space

!"x(t) and y(t) describe a path through time

How does the height (f) change over time?

It will receiving contributions due to how steep f is in the x direction ( ), and the y

direction ( ).

It will also receiving contributions due to how fast x is changing ( ) and how fast y is

changing ( )

The single-variable chain rule proves that the two contributions through the path of x
multiply with each other.

The multi-variable chain rule is simply an expression of the fact that differentiation is linear,
so the contributions from each path sum together.

∂f

∂x
∂f

∂y

∂x
∂t

∂x
∂t



x = np.linspace(0,3*np.pi,100)[:,np.newaxis]
y = np.linspace(0,3*np.pi,100)
x,y = np.broadcast_arrays(x,y)

x.shape,y.shape

((100, 100), (100, 100))



def f(x,y):
return np.sin(x)*y + y

all_f = f(x,y)

t = np.linspace(0,5**1/2,30)**2
path_x = np.cos(t/4)+3*t/2
path_y = np.sin(t**2/4)+3*t/2
path_f = f(path_x,path_y)



plt.sca(ax);plt.show()



Consider the following situation:

!"f(x,y) is a 'height' over a 2-d landscape

!"x and y are coordinate space

!"x(t) and y(t) describe a path through time

How does the height (f) change over time?

It will receiving contributions due to how steep f is in the x direction ( ), and the y

direction ( ).

It will also receiving contributions due to how fast x is changing ( ) and how fast y is

changing ( )

The single-variable chain rule proves that the two contributions through the path of x
multiply with each other.

The multi-variable chain rule is simply an expression of the fact that differentiation is linear,
so the contributions from each path sum together.

∂f

∂x
∂f

∂y

∂x
∂t

∂x
∂t



Revisiting autograd graphs



Revisiting autograd graphs
t = th.linspace(0,3,100)
t.requires_grad_(True)
x = t.sin()
y = t.cos()
f_all = x*y



(100)

MulBackward0

SinBackward0

AccumulateGrad

CosBackward0

t
(100)

make_dot(f_all,params={"t":t})



(100)

MulBackward0

SinBackward0

AccumulateGrad

CosBackward0

t
(100)

make_dot(f_all,params={"t":t})

If you apply the chain rule recursively, you find that every possible path of multiplications
contributes to the gradient.

Writing out each path could be quite a lot. It tends to be what happens if you ask a human
to expand the formulas for the derivatives out by hand.



def f(x,y):
z = th.sin(x)*y + y*x
return (th.exp(z)*y+x)*z

# By the way, you can add axes just like in numpy with np.newaxis
x = th.linspace(0,3*np.pi,100)[:,np.newaxis] 
y = th.linspace(0,3*np.pi,100)
x.requires_grad_(True)
y.requires_grad_(True)
f_all = f(x,y)



make_dot(f_all)



MulBackward0

AddBackward0

MulBackward0

ExpBackward0

AddBackward0

MulBackward0

SinBackward0

AccumulateGrad

MulBackward0

(100, 1)

AccumulateGrad

(100)



A recipe for tape-based autograd
However, all of the multiplications below a given node will be equal to a single (tensor-
valued) result!

If we consider a final loss function  and an intermediate node , the gradients to all pieces
before  only need to know the total contribution of the gradient . We can walk

backwards through all , in reverse order of the forward pass to compute L, and determine
the full gradient value for each node without traversing the graph explicitly.

All we need is:

L k

k ∂L
∂k

k



1. Have our underlying functions know about a related backward  function. The

backward function receives the gradient of the cost for the output of the function,

and computes one contribution of the gradient for the inputs.

let  be a concrete value of the gradient with respect to a cost we are interested

in.

Gθ := ∂L
∂θ

w = f(x, y) ⟹

Gx = Gw ∗ (x, y)∂f

∂x

Gy = Gw ∗ (x, y)∂f

∂y



2. There are some proofs that the backwards functions take about the same number as

operations as the forwards functions, but only IF we are allowed to store the results

of the forward calculations. If you are doing autograd in a tape-based

implementation like pytorch, this means that your functions are not pure.



3. Walk through the backwards functions in the reverse order. Every time you reach a

certain result, add that contribution to the gradient and store it in x.grad  (This is

why you have to do the zero_grad  step in training.)



When you are done replaying operations in reverse, all of the possible paths will have been
implicitly summed, and every tensor will have the correct result in its .grad  attribute



Autograd recipe
1. Link forward operations to their backward (adjoint) operations

2. Save necessary forward computations to enable efficient backward operations

3. Walk through the graph backward, adding results that target the same tensor

These steps are not horrendously complicated, but it is very convenient to have a library on
hand with lots of functions and links to the corresponding backwards functions.

 is an instructive implementation of tape-based autograd in less than 100 lines
for the core algorithm.
micrograd

https://github.com/karpathy/micrograd
https://github.com/karpathy/micrograd


Di"erence between grad  and backward
1. torch.autograd.grad  is useful if you only need the derivative of certain inputs,

not every input. It doesn't store any information on .grad .



Di"erence between grad  and backward
1. torch.autograd.grad  is useful if you only need the derivative of certain inputs,

not every input. It doesn't store any information on .grad .

x = th.Tensor([1,2,3]).requires_grad_(True)
y = 3*x.sum()
gx = grad(y,[x])[0]
print("gx:",gx)
print("x.grad:",x.grad)

gx: tensor([3., 3., 3.])
x.grad: None



2. torch.autograd.backward  will accumulate gradients for all inputs that require

grad.

!"the Tensor.backward  method is equivalent to this

!"the result is ADDED ONTO the .grad  attribute of the tensor

!"this is why we have calls to zero_grad()  in the tbaining loops, so that we are

adding the gradient onto zero instead of onto the gradient from previous

calculations.

Note that using either of these functions will erase the autograd tape information:



2. torch.autograd.backward  will accumulate gradients for all inputs that require

grad.

!"the Tensor.backward  method is equivalent to this

!"the result is ADDED ONTO the .grad  attribute of the tensor

!"this is why we have calls to zero_grad()  in the tbaining loops, so that we are

adding the gradient onto zero instead of onto the gradient from previous

calculations.

Note that using either of these functions will erase the autograd tape information:

x = th.Tensor([1,2,3]).requires_grad_(True)
y = 3*x.sum()

print("First call works!")
y.backward()
print("Second call breaks!")
with suppress_traceback():

y.backward()

First call works!
Second call breaks!

RuntimeError: Trying to backward through the graph a second time 
(or directly access saved tensors after they have already been f
reed). Saved intermediate values of the graph are freed when you 
call .backward() or autograd.grad(). Specify retain_graph=True i
f you need to backward through the graph a second time or if you 
need to access saved tensors after calling backward.



Retaining the autograd tape
1. There's no need in the algorithm to delete the graph when you do a backwards

computation.

!"However, you typically don't need to use the same graph more than once, and once

the graph is consumed, pytorch can free the memory associated with intermediate

variables.

!"This is much like using tensor.Detach ; Pytorch will do these things, but only if

you ask.

2. You can pass retain_graph=True  to prevent consuming the graph.

!"Doing so without some care will likely lead to memory leaks and eventually an out of

memory error.



x = th.Tensor([1,2,3]).requires_grad_(True)
y = 3*x.sum()

print("First call works:")
grad_1=y.backward(retain_graph=True)
print("First call result:",x.grad)
print("Second call works:")
y.backward()
print("Second call result:",x.grad)

First call works:
First call result: tensor([3., 3., 3.])
Second call works:
Second call result: tensor([6., 6., 6.])



x = th.Tensor([1,2,3]).requires_grad_(True)
y = 3*x.sum()

print("First call works:")
grad_1=y.backward(retain_graph=True)
print("First call result:",x.grad)
print("Second call works:")
y.backward()
print("Second call result:",x.grad)

First call works:
First call result: tensor([3., 3., 3.])
Second call works:
Second call result: tensor([6., 6., 6.])

The result is twice as much the second time because of the accumulation to .grad .



Integrating your custom
operation with autograd.
Note: This is a good learning experience, but is Almost Always Not Necessary.

(The one time I have used this is because I have a specific sparse, three-way tensor-
tensor-matrix contraction operation in my neural network for atomistic systems, and
although it can be implemented with pure pytorch operations, that implementation used far
more memory than needed. I used numba to perform the calculation more efficiently, and
linked it into pytorch with a custom autograd operation)



class MySineFunction(th.autograd.Function):
@staticmethod # Methods are static, do not take `self`
def forward(ctx, x): # ctx variable acts like "self"

## Perform the forward.
## Note that autograd is OFF inside an autograd.Function
## because YOU are supplying the backward implementation.
y = th.sin(x)
## ctx is a context object for storing information
## for backward computation
ctx.x = x
return y

@staticmethod
def backward(ctx, grad_output): 

## Note that autograd is ON by default in the backward pass.
x = ctx.x
dLdy = grad_output #  the gradients w.r.t a scalar
# dL/dx = dL/dy * (dy/dx)
# In this case, (dy/dx) = cos(x)
dLdx = dLdy * th.cos(x) 
return dLdx

    
# the apply method of `Function` is what you want to use.
mysine = MySineFunction.apply 



Note that autograd is ON by default in the backward pass. This allows you to implement
more complicated things like infinitely differentiable functions. For example, you can make a
set of sine and cosine functions using numpy code instead of pytorch, and link them both
to each other.

Again, usually you don't need to do this. I'm presenting for the value of learning a bit about
the internals, it is not a routine thing to do in pytorch.

Now we can use mysine  like any other pytorch function.



Checking the output



Checking the output
x = th.linspace(0,2*np.pi,20,dtype=th.float64).requires_grad_(True)

th_sin_x = th.sin(x)
my_sin_x = mysine(x)



Checking the output
x = th.linspace(0,2*np.pi,20,dtype=th.float64).requires_grad_(True)

th_sin_x = th.sin(x)
my_sin_x = mysine(x)

plt.sca(ax); plt.show()



x = th.linspace(0,2*np.pi,20,dtype=th.float64).requires_grad_(True)

th_sin_x = th.sin(x)
my_sin_x = mysine(x)

print("Arrays are equal:",(my_sin_x == th_sin_x).all().item())
print(my_sin_x)

Arrays are equal: True
tensor([ 0.0000e+00,  3.2470e-01,  6.1421e-01,  8.3717e-01,  9.6
940e-01,
         9.9658e-01,  9.1577e-01,  7.3572e-01,  4.7595e-01,  1.6
459e-01,
        -1.6459e-01, -4.7595e-01, -7.3572e-01, -9.1577e-01, -9.9
658e-01,
        -9.6940e-01, -8.3717e-01, -6.1421e-01, -3.2470e-01, -2.4
493e-16],
       dtype=torch.float64, grad_fn=<MySineFunctionBackward>)



x = th.linspace(0,2*np.pi,20,dtype=th.float64).requires_grad_(True)

th_sin_x = th.sin(x)
my_sin_x = mysine(x)

print("Arrays are equal:",(my_sin_x == th_sin_x).all().item())
print(my_sin_x)

Arrays are equal: True
tensor([ 0.0000e+00,  3.2470e-01,  6.1421e-01,  8.3717e-01,  9.6
940e-01,
         9.9658e-01,  9.1577e-01,  7.3572e-01,  4.7595e-01,  1.6
459e-01,
        -1.6459e-01, -4.7595e-01, -7.3572e-01, -9.1577e-01, -9.9
658e-01,
        -9.6940e-01, -8.3717e-01, -6.1421e-01, -3.2470e-01, -2.4
493e-16],
       dtype=torch.float64, grad_fn=<MySineFunctionBackward>)

Note how the grad_fn  points at something interesting called
MySineFunctionBackward .



Let's examine how the gradient behavior looks



Let's examine how the gradient behavior looks

x = th.linspace(0,2*np.pi,20,dtype=th.float64).requires_grad_(True)
th_sin_x = th.sin(x)
my_sin_x = mysine(x)

gx_th_sin= grad(th_sin_x.sum(),[x])[0]
gx_my_sin = grad(my_sin_x.sum(),[x])[0]

print("Grad arrays are equal:",(gx_th_sin==gx_my_sin).all().item())

Grad arrays are equal: True



# Plot them to take a look:
plt.plot(x.detach().numpy(),gx_th_sin.detach().numpy(),

marker='o',mfc=[1,1,1,1],ms=10,lw=0,c='b',
label = "GRAD Torch implementation")

plt.plot(x.detach().numpy(),gx_my_sin.detach().numpy(),
marker='x',ms=12,lw=0,c='r',
label='GRAD My implementation')

plt.legend()
plt.show()



Looks good! As an exercise, play around with MySineFunction. Can you make
MyTanhFunction? Can you make this function work via np.sin  or math.sin ?



Checking Gradients
Although pytorch tries to make it hard to "shoot yourself in the foot" with autograd, it is still
possible. If your model is not working right, you can check gradients through a function by
comparing with finite differences.

!"Finite differences are much slower.

!"They rely on a finite but small  parameter. This means that:

#"There is error introduced in the calculation.

#" float32  dtypes are often not acccurate enough to get good finite

differences, so do the computation in float64 .

!"However, because finite differences only rely on the forward computation and the

definition of the derivative, it is typically robust; it is "too dumb to fail"

Checking gradients numerically is extremely useful for debugging 'weird' problems.

You can check gradients with torch.autograd.gradcheck !

ϵ



from torch.autograd import gradcheck

# Use float64 inputs for gradcheck V
x = th.linspace(0,2*np.pi,10,dtype=th.float64).requires_grad_(True)

# If this returns True, then all is well.
gradcheck(mysine,[x])

True



from torch.autograd import gradcheck

# Use float64 inputs for gradcheck V
x = th.linspace(0,2*np.pi,10,dtype=th.float64).requires_grad_(True)

# If this returns True, then all is well.
gradcheck(mysine,[x])

True

It's that easy!



What it looks like when you break autograd:



What it looks like when you break autograd:
def broken_f(x,y):

"""This function is broken w.r.t autograd!"""
yp = y.detach().numpy()
output = x*th.from_numpy(yp) # A differentiable variable went out of torch and then b
return output

x = th.ones(4,dtype=th.float64).requires_grad_(True)
y = th.sin(x)
with suppress_traceback():

gradcheck(broken_f,[x,y])

GradcheckError: Jacobian mismatch for output 0 with respect to i
nput 1,
numerical:tensor([[1.0000, 0.0000, 0.0000, 0.0000],
        [0.0000, 1.0000, 0.0000, 0.0000],
        [0.0000, 0.0000, 1.0000, 0.0000],
        [0.0000, 0.0000, 0.0000, 1.0000]], dtype=torch.float64)
analytical:tensor([[0., 0., 0., 0.],
        [0., 0., 0., 0.],
        [0., 0., 0., 0.],
        [0., 0., 0., 0.]], dtype=torch.float64)



with suppress_traceback():
gradcheck(broken_f,[x,y])

GradcheckError: Jacobian mismatch for output 0 with respect to i
nput 1,
numerical:tensor([[1.0000, 0.0000, 0.0000, 0.0000],
        [0.0000, 1.0000, 0.0000, 0.0000],
        [0.0000, 0.0000, 1.0000, 0.0000],
        [0.0000, 0.0000, 0.0000, 1.0000]], dtype=torch.float64)
analytical:tensor([[0., 0., 0., 0.],
        [0., 0., 0., 0.],
        [0., 0., 0., 0.],
        [0., 0., 0., 0.]], dtype=torch.float64)



with suppress_traceback():
gradcheck(broken_f,[x,y])

GradcheckError: Jacobian mismatch for output 0 with respect to i
nput 1,
numerical:tensor([[1.0000, 0.0000, 0.0000, 0.0000],
        [0.0000, 1.0000, 0.0000, 0.0000],
        [0.0000, 0.0000, 1.0000, 0.0000],
        [0.0000, 0.0000, 0.0000, 1.0000]], dtype=torch.float64)
analytical:tensor([[0., 0., 0., 0.],
        [0., 0., 0., 0.],
        [0., 0., 0., 0.],
        [0., 0., 0., 0.]], dtype=torch.float64)

Here, the numerical jacobian of df/dy with respect to input 1, that is, y , is the identity
matrix. But the "analytic" one, that is, the one coming from autograd, is all zeros.

Note: gradcheck will run f many times. If you have a print statement in your function, it will
spam the terminal.



Di"erences from other autograd implementations
!" jax  uses a clever ahead-of-time functional programming approach, however, it is a

little more fragile and easier to break than pytorch's tape-based approach.

!" autograd  is a famous python package that brought a foothold to the tape-based

approach. Both Pytorch and Jax followed autograd's lead to provide a numpy-like

interface.



!" theano  and tensorflow  work very differently from pytorch:

#"You program the model by first defining the graph, and then plugging in

values later.

#"This is a declarative programming paradigm, rather than an an imperative
programming paradigm. If you haven't heard of the difference, you have

probably always been using an imperative language.

#"Tensorflow now has a mode that works more like pytorch from a user

perspective.

#"Theano will additionally optimize the graph in a lot of usesful ways.

#"The downside of this is that it is much harder to add extra operations to the

graph -- instead of using the python print function to print an intermediate

value, the graph has to have a print node  of some kind.



!"In languages other than python, code macros are a powerful tool that allow one to

differentiate source code directly. This has advantages, because a compiler can then

optimize very thoroughly, and one does not need to implement as many backward

functions. This is the approach of the Julia package zygote.jl .

!" Keras  is a wrapper library -- it does not implement any of this stuff itself, and is

only focused on making it easier to build NNs using a backend engine like pytorch or

tensorflow.

#"in my opinion, pytorch is nearly as easy as keras

#" skorch  provides sklearn -like wrappers for pytorch

#" ignite  provides high-level training workflows.



Conclusions
!"Pytorch offers a numpy/scipy-like array of operations in tandem with GPU support.

!"The key feature for all neural network libraries is automatic differentiation

!"Pytorch implements this using a tape-based approach of recording live metadata.

!"Autograd is a recursive implementation of the chain rule.

!"You can add custom operations to pytorch autograd.



Conclusions
!"Pytorch offers a numpy/scipy-like array of operations in tandem with GPU support.

!"The key feature for all neural network libraries is automatic differentiation

!"Pytorch implements this using a tape-based approach of recording live metadata.

!"Autograd is a recursive implementation of the chain rule.

!"You can add custom operations to pytorch autograd.

print("Done")

Done


